EXOTIC SYMMETRIC SPACES OF HIGHER LEVEL: SPRINGER CORRESPONDENCE FOR COMPLEX REFLECTION GROUPS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An exotic Springer correspondence for symplectic groups

Let G be a complex symplectic group. In [K1], we singled out the nilpotent cone N of some reducible G-module, which we call the (1-) exotic nilpotent cone. In this paper, we study the set of G-orbits of the variety N. It turns out that the variety N gives a variant of the Springer correspondence for Weyl groups of type C, but shares a similar flavor with that of type A case. (I.e. there appears...

متن کامل

Springer Theory for Complex Reflection Groups

Many complex reflection groups behave as though they were the Weyl groups of “nonexistent algebraic groups”: one can associate to them various representation-theoretic structures and carry out calculations that appear to describe the geometry and representation theory of an unknown object. This paper is a survey of a project to understand the geometry of the “unipotent variety” of a complex ref...

متن کامل

Modular generalized Springer correspondence III: exceptional groups

We complete the construction of the modular generalized Springer correspondence for an arbitrary connected reductive group, with a uniform proof of the disjointness of induction series that avoids the case-by-case arguments for classical groups used in previous papers in the series. We show that the induction series containing the trivial local system on the regular nilpotent orbit is determine...

متن کامل

Spin Representations of Weyl Groups and the Springer Correspondence

We give a common framework for the classification of projective spin irreducible representations of a Weyl group, modeled after the Springer correspondence for ordinary representations.

متن کامل

Howe Correspondence and Springer Correspondence

Consider real reductive group G, as defined in [Wal88]. Let Π be an irreducible admissible representation of G with the distribution character ΘΠ, [Har51]. Denote by uΠ the lowest term in the asymptotic expansion of ΘΠ, [BV80]. This is a finite linear combination of Fourier transforms of nilpotent coadjoint orbits, uΠ = ∑ O cOμ̂O. As shown by Rossmann, [Ros95], the closure of the union of the ni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transformation Groups

سال: 2015

ISSN: 1083-4362,1531-586X

DOI: 10.1007/s00031-015-9350-9